
Who are we, and what are we doing here?

Alan Wassyng

McMaster Centre for Software Certification, Department of Computing and Software,
McMaster University, Hamilton, Ontario, Canada,

wassyng@mcmaster.ca

Abstract. Many Formal Methods researchers and practitioners seem to
treat Formal Methods more as a religion than as an approach to rigorous
software engineering. This fervour has a few side-effects: i) There have
been spectacular advances in a few areas in Formal Methods; ii) There
are a significant number of highly effective Formal Methods advocates
- and practitioners; iii) The Formal Methods community at large seems
to be condescendingly dismissive of any protestation of disbelief; and iv)
Different methods and approaches seem to be judged on a belief basis
rather than through evidence based analysis. The essential fact remains
though, that after decades of research, Formal Methods are not used
much in industrial software development. It is time that we, the Formal
Methods community, question the basis of our existence. I argue that
we exist to further the use of mathematics and rigorous analysis in the
development of software applications, in the same way that electrical en-
gineers, mechanical engineers, civil engineers, chemical engineers further
the safe and effective development of a multitude of devices, buildings,
manufacturing processes etc. This is clearly not a new thought. It does,
however, suggest that we need to examine the link between Formal Meth-
ods and Software Engineering more carefully than is currently the case. A
definition of engineering from the Academic Press Dictionary of Science
and Technology is “the application of scientific knowledge about matter
and energy for practical human uses such as construction, machinery,
products, or systems”. Engineers use science as the basis for their work.
This is not a one-way street. Feedback from engineering as to what are
the important scientific problems to be solved is an important driver in
scientific endeavours. Engineering work, in turn, forms a basis for the
work done by technicians in our everyday lives. Again, feedback is an es-
sential driver for the engineering community. In the modern digital world,
Software Engineers should assume the role of the engineer. If we are truly
serious about Software Engineering as an engineering profession, we need
to consider the roles of Computer Scientists and Software Developers in
this context. To be consistent with other domains, Software Engineers
should use scientific knowledge as the basis of their work. This knowl-
edge includes the growing domain of knowledge generated by Computer
Science, and in particular, the specialized forms of mathematics that are
applicable in the digital domain. In addition to Computer Scientists and
Software Engineers, we also have Software Developers the technicians of
our domain. This is a nice and neat correlation with other engineering
fields unfortunately it is not, at this time, an accurate description of the



situation. In most countries, the difference between Computer Science
and Software Engineering is decidedly blurry. Even when the difference
should be obvious (for example, Canada insists that to call yourself an
“engineer” you must be recognized as such by a professional engineer-
ing accreditation body), it is commonplace to find Computer Scientists
playing the role of both engineer and technician. What does this mean
for Formal Methods? Are Formal Methods people Computer Scientists,
Software Engineers, Software Developers all of the above any of the
above? If you look back at what I said about our raison d’etre, and if
you agreed with what I said, perhaps you agreed too quickly!

Lately, my interests have been focused on the certification of software in-
tensive systems: methods for building software intensive systems so that
they can be certified; and methods for certifying such systems. This has
made me rethink why, in spite of some amazing advances, Formal Meth-
ods are not used more often in everyday practice. I strongly believe that
it is both possible and necessary to define engineering methods for the
development of high integrity software applications, that these engineer-
ing methods must be based on mathematics, science, and well-founded
heuristics, that “approved” methods should be significantly more pre-
scriptive/objective than current software development techniques, and
that these methods have to be supported by high quality tool chains. I
also believe that the development of these methods is the task, primar-
ily, of Software Engineers. What is the implication of this for the Formal
Methods community? I think the answer is simple but not yet widely
palatable. I think there is not enough focus on Software Engineering as
opposed to Computer Science. It seems to me that the feedback from
the engineering domain to the science domain is haphazard at best -
non-existent a lot of the time! Over the past twenty years we have seen
papers on myths of Formal Methods, Challenges of Formal Methods, the
Ten Commandments of Formal Methods, experience of Formal Meth-
ods in industry, rethinking Formal Methods and the list goes on. So,
why another talk on what seems to be a talked-out subject? Arrogance,
of course! And, I hope, some new observations that may help us define
our future path. I did not come to these conclusions all on my own. I
have been extremely fortunate in my career, both in industry and in
academia, to work with incredibly smart and dedicated colleagues, and
I am indebted to them for teaching me so much about a very complex
subject.

From a Software Engineering perspective, there are a number of fun-
damental principles that need to guide our design of Formal Methods:
integration of the Formal Methods aspects with the rest of the software
development life cycle; integration of the life cycle phases; comprehensive
tool chains integrated into the methods; completeness criteria; ability to
handle real-world aspects; scalability; the methods and tools must be
understandable and usable by average, educated, practitioners (techni-
cians); prescriptive/objective guidance; experimental validation of result-
ing methods and tools; and development with certification as a goal. In
this talk I will use a running example to illustrate and discuss these prin-
ciples. I hope this talk will be viewed as an exhortation to great technical



successes, and even greater success in producing powerful methods and
tools that software developers will want to use.

Acknowledgements

The opinions expressed in this talk are mine, but I have been incredibly fortunate
to work with many extremely knowledgeable and capable software professionals
over the past twenty years, both in academia and in industry. There are too
many to mention all of them, but I do need to acknowledge my gratitude to:
Mark Lawford, Tom Maibaum, Paul Joannou, and Dave Parnas for the hours of
discussion (not to mention arguments) and collaboration, especially over the past
ten years. Also, my colleagues Rick Hohendorf, Glenn Archinoff, Dominic Chan,
David Lau, Greg Moum, Mike Viola, Jeff McDougall, David Tremaine, Peter
Froebel and Alanna Wong, showed me how to approach software engineering as
a true engineering discipline. Thanks to all of you!


