Formalizing Hybrid Systems with Event-B

Jean-Raymond Abrial, Wen Su, Huibiao Zhu

August 2012

Prologue

Using B Formal Method in Industry

Train Applications

- Fully automatic train systems:
- Paris metro line 14 (October 1998)
- Roissy airport shuttle (March 2007)
- More train applications

Line length	8.5 km
Number of Stops	8
Time interval between two trains	115 s
Speed	$40 \mathrm{~km} / \mathrm{h}$
Number of trains	17
Passengers per day	350,000

Line length	3.3 km
Number of Stops	5
Time interval between two trains	105 s
Speed	$26 \mathrm{~km} / \mathrm{h}$
Number of trains	14
Passengers per hour	2,000

	Paris	Roissy
Number of final ADA lines (from B)	86,000	158,000
Number of proofs	27,800	43,610
Percentage of interactive proofs	8.1	3.3
Interactive proofs in Man.Month	7.1	4.6

Comparing the Case Studies (2)

- Man.month calculated with:
- 15 interactive proofs per man.day
- 21 days in a month
- In both cases, no unit tests and no integration tests
- Reinforcing global tests (catastrophic scenarios)
-Important differences in the software requirements:
- Paris: specially done for the project
- Paris: adaptation from O'Hare Airport (problems)

City	Line	Service	Driverless
Algiers	1	2011	No
Barcelona	9	2007	Yes
Budapest	4	2013	Yes
Caracas	4	2004	No
Helsinki	1	2013	No
Hong Kong	TKO	2001	No

City	Line	Service	Driverless
Mexico	B	2000	No
New York	Canarsie	2006	No
	PATH	2014	No
Paris	14	1998	Yes
	3	2009	No
	1	2011	Yes
	5	2012	No

Similar Applications by Siemens (3)

City	Line	Service	Driverless
Rennes	B	2018	Yes
Roissy CDG	1	2007	Yes
2	2007	Yes	
San Juan	2	2004	No
Sao Paulo	TKO	2001	Yes

Contact: Jean-Marc.Meynadier@siemens.com

System	City	Service	Size	Language	Driverless
KVB	French Trains	1993	30000	ADA	No
CDTC	Cairo	1996	3000	Modula2	No
SACEM	Paris (RER B)	1996	2500	Modula2	No
ACSES	AMTRACK (USA)	2002	14500	ADA	No

System	City	Service	Size	Language	Driverless
Urbalis 200	Shanghai New Dehli Seoul	2003	30000	ADA	No
	Daegu Incheoun Madrid Santiago Cairo	2013			
	Bangalore				

Similar Applications by Alstom (3)

System	City	Service	Size	Language	Driverless
Urbalis 400	Shanghai	2008	100000	ADA	No
	Beijing				Yes
	Chenzen				No
	Sao Paulo	2013		Yes	
	Mexico			No	
	Milano			No	
	Toronto			No	
	Wuhan				No

Contact: Luis-Fernando.Mejia@transport.alstom.com

Formalizing Hybrid Systems with Event-B

Jean-Raymond Abrial, Wen Su, Huibiao Zhu

August 2012

- Event-B is said to handle discrete transition systems: is it enough?
- Event-B is said to handle discrete transition systems: is it enough?
- Continuous transition systems are important too
- Event-B is said to handle discrete transition systems: is it enough?
- Continuous transition systems are important too: are not they?
- Event-B is said to handle discrete transition systems: is it enough?
- Continuous transition systems are important too: are not they?
- How can time be handled in Event-B?
- Event-B is said to handle discrete transition systems: is it enough?
- Continuous transition systems are important too: are not they?
- How can time be handled in Event-B?
- Is it necessary to add a special "time feature" within Event-B?
- Event-B is said to handle discrete transition systems: is it enough?
- Continuous transition systems are important too: are not they?
- How can time be handled in Event-B?
- Is it necessary to add a special "time feature" within Event-B?

Hybrid Systems

Hybrid Systems

- The idea is then to introduce (somehow) continuous transitions

Hybrid Systems

- The idea is then to introduce (somehow) continuous transitions
- BUT, when introducing such continuous transitions

Hybrid Systems

- The idea is then to introduce (somehow) continuous transitions
- BUT, when introducing such continuous transitions the discrete transitions are still needed

Hybrid Systems

- The idea is then to introduce (somehow) continuous transitions
- BUT, when introducing such continuous transitions the discrete transitions are still needed
- Hence the notion of hybrid systems
- The idea is then to introduce (somehow) continuous transitions
- BUT, when introducing such continuous transitions the discrete transitions are still needed
- Hence the notion of hybrid systems
where both discrete and continuous transitions can occur
Typical Hybrid Systems 25

Typical Hybrid Systems

- Hybrid frameworks are frequent in embedded systems where:

Typical Hybrid Systems

- Hybrid frameworks are frequent in embedded systems where:
- A piece of software, the controller, manages an environment
Typical Hybrid Systems
- Hybrid frameworks are frequent in embedded systems where:
- A piece of software, the controller, manages an environment
- Controller is linked to environment by sensors and actuators
- Hybrid frameworks are frequent in embedded systems where:
- A piece of software, the controller, manages an environment
- Controller is linked to environment by sensors and actuators
- Controller works from time to time in a DISCRETE fashion
- Hybrid frameworks are frequent in embedded systems where:
- A piece of software, the controller, manages an environment
- Controller is linked to environment by sensors and actuators
- Controller works from time to time in a DISCRETE fashion
- While environment evolves in a CONTINUOUS way.

DISCRETE

CONTINUOUS

DISCRETE

- We want to develop models of such closed systems

DISCRETE

- We want to develop models of such closed systems
- We have thus to cope with both discrete and continuous evolutions

Example

- Continuous physical environment:
a train defined by its position, speed, and acceleration

Example

- Continuous physical environment:
a train defined by its position, speed, and acceleration

Example (cont'd)

- Discrete controller:
a driver changing from time to time the acceleration of the train

Example (cont'd)

- Discrete controller:
a driver changing from time to time the acceleration of the train

Example (cont'd)

- Discrete controller:
a driver changing from time to time the acceleration of the train

- Goal: to control the speed of the train (station or another train)
R.J. Back and R. Kurki-Suonio.

Distributed Cooperation with Action Systems
ACM Transaction on Programming Languages and Systems. 1988.
R.J. Back, L. Petre, and I. Porres.

Generalizing Action Systems to Hybrid Systems.
FTRTFT 2000. LNCS 1926 Springer Verlag, 2000.
R.J. Back, C. Cerschi Seceleanu, and J. Westerholm.

Symbolic Simulation of Hybrid Systems.
APSEC'02, 2002.

Our Papers

Formalizing Hybrid Systems with Event-B
ABZ Conference. Pisa, June 2012

Complementary Methodologies for Developing Hybrid Systems with Event-B

Accepted at ICFEM 2012. Kyoto, November 2012

The Approach with Event-B (inspired by Action System)

- Discrete variables together with continuous variables
- Discrete variables together with continuous variables
- Continuous variables are time functions as in Action System
- Discrete variables together with continuous variables
- Continuous variables are time functions as in Action System
- We are interested in the immediate future of continuous variables
- Discrete variables together with continuous variables
- Continuous variables are time functions as in Action System
- We are interested in the immediate future of continuous variables
- Discrete systems as an abstraction of continuous ones
- Discrete variables together with continuous variables
- Continuous variables are time functions as in Action System
- We are interested in the immediate future of continuous variables
- Discrete systems as an abstraction of continuous ones
- We thus use refinement from a discrete to a continuous system

Three Examples

- The 2 examples:
- Aircraft collision avoidance
- Train control (time permitting),
- The 2 examples:
- Aircraft collision avoidance
- Train control (time permitting),
- Description:
- The problem,
- The constraints and goal,
- The solution,
- The discrete and continuous transitions
- The 2 examples:
- Aircraft collision avoidance
- Train control (time permitting),
- Description:
- The problem,
- The constraints and goal,
- The solution,
- The discrete and continuous transitions
- Examples developed and fully proved with the Rodin Platform
- The 2 examples:
- Aircraft collision avoidance
- Train control (time permitting),
- Description:
- The problem,
- The constraints and goal,
- The solution,
- The discrete and continuous transitions
- Examples developed and fully proved with the Rodin Platform
- These examples show complete analytical solutions

Example 1

Aircraft Collision Avoidance

Aircraft Collision Avoidance

- Two aircrafts are flying at the same altitude and speed

Aircraft Collision Avoidance

- Two aircrafts are flying at the same altitude and speed
- They might converge (collision) at some point o

Aircraft Collision Avoidance

- Two aircrafts are flying at the same altitude and speed
- They might converge (collision) at some point o

- The distance between aircrafts is as follows:

$$
d=2 \rho \sin \frac{\phi}{2}
$$

- The distance between aircrafts is as follows:

$$
d=2 \rho \sin \frac{\phi}{2}
$$

- Their distance must always be greater than or equal to a constant p

- The distance between aircrafts is as follows:

$$
d=2 \rho \sin \frac{\phi}{2}
$$

- Their distance must always be greater than or equal to a constant p
- Goal: we want to find a solution to avoid the collision

- The radius r of this circle will be determined later
- Both aircrafts continue to fly at the same speed during the maneuver

Consequence of the Solution

Consequence of the Solution

- Angle ϕ between aircrafts does not change during the maneuver

Consequence of the Solution

- Angle ϕ between aircrafts does not change during the maneuver
- Both aircrafts are still at the same distance rho of the point o

Consequence of the Solution

- Angle ϕ between aircrafts does not change during the maneuver
- Both aircrafts are still at the same distance $r h o$ of the point o
- The only parameter that counts then in order to maintain the distance $\boldsymbol{d} \geq \boldsymbol{p}$:

$$
d=2 \rho \sin \frac{\phi}{2} \geq p
$$

Consequence of the Solution

- Angle ϕ between aircrafts does not change during the maneuver
- Both aircrafts are still at the same distance $r h o$ of the point o
- The only parameter that counts then in order to maintain the distance $d \geq p:$

$$
d=2 \rho \sin \frac{\phi}{2} \geq p
$$

- is the common distance ρ of both aircrafts to the collision point o

Consequence of the Solution

- Angle ϕ between aircrafts does not change during the maneuver
- Both aircrafts are still at the same distance $r h o$ of the point o
- The only parameter that counts then in order to maintain the distance $\boldsymbol{d} \geq \boldsymbol{p}$:

$$
d=2 \rho \sin \frac{\phi}{2} \geq p
$$

- is the common distance ρ of both aircrafts to the collision point o
- The smallest distance is when they are on the circle (more later)

Consequence of the Solution

- Angle ϕ between aircrafts does not change during the maneuver
- Both aircrafts are still at the same distance rho of the point o
- The only parameter that counts then in order to maintain the distance $\boldsymbol{d} \geq \boldsymbol{p}$:

$$
d=2 \rho \sin \frac{\phi}{2} \geq p
$$

- is the common distance ρ of both aircrafts to the collision point o
- The smallest distance is when they are on the circle (more later)
- We must have then: $\frac{p}{2 \sin \frac{\phi}{2}} \leq r$

Making the Maneuver more Precise

Making the Maneuver more Precise

- Both aircrafts fly as indicated on this figure

Making the Maneuver more Precise

- Both aircrafts fly as indicated on this figure
- They start the maneuver when at a distance $r \sqrt{3}$ from the point o

Making the Maneuver more Precise

- Both aircrafts fly as indicated on this figure
- They start the maneuver when at a distance $r \sqrt{3}$ from the point o
- The airrafts decide to maneuver while at a distance ρ_{i} from o

- Both aircrafts fly as indicated on this figure
- They start the maneuver when at a distance $r \sqrt{3}$ from the point o
- The airrafts decide to maneuver while at a distance ρ_{i} from o
- We must have then: $\rho_{i} \geq r \sqrt{3}$ that is $r \leq \frac{\rho_{i}}{\sqrt{3}}$

- Both aircrafts fly as indicated on this figure
- They start the maneuver when at a distance $r \sqrt{3}$ from the point o
- The airrafts decide to maneuver while at a distance ρ_{i} from o
- We must have then: $\rho_{i} \geq r \sqrt{3}$ that is $r \leq \frac{\rho_{i}}{\sqrt{3}}$
- We have then:

$$
\frac{p}{2 \sin \frac{\phi}{2}} \leq r \leq \frac{\rho_{i}}{\sqrt{3}}
$$

Making the Maneuver more Precise

- Here is again the possible interval for the radius r of the circle:

$$
\frac{p}{2 \sin \frac{\phi}{2}} \leq r \leq \frac{\rho_{i}}{\sqrt{3}}
$$

- We must have then the following for the constants ρ_{i}, ϕ, and p :

$$
2 \rho_{i} \sin \frac{\phi}{2} \geq p \sqrt{3}
$$

- ϕ is the angle of the two trajectories
- ρ_{i} is the initial distance of the two aircrafts to the collision point o
- p is the minimal safety distance between the two aircrafts
axm1: $\quad \phi \in 0 \ldots \pi$
axm2: $\quad \rho_{i} \in \mathbb{R}^{+}$
axm2: $\quad p \in \mathbb{R}^{+}$
axm4: $\quad 2 \rho_{i} \sin \frac{\phi}{2} \geq p \sqrt{3}$
- In this initial model, we are still discrete
- phase corresponds to the various discrete events
- ρ is the common distance of the aircrafts to the collision point o
$-r$ is the circle radius
inv1: phase $\in\{0,1,2,3,4,5\}$
inv2: $\quad \rho \in \mathbb{R}^{+}$
inv3: $r \in \mathbb{R}^{+}$
inv4: $\quad 2 \rho \sin \frac{\phi}{2} \geq p$
- inv4 is the safety invariant: the minimal authorized distance is p
- INIT: initialisation
- agree: choose the radius of the circle
- start: start the maneuver
- enter: entering the circle
- cycle: move on the circle
- leave: leaving the circle

INIT
begin
$\rho:=\rho_{i}$
$p h a s e$
r
$r: \in \mathbb{R}^{+}$
end


```
agree
    any c where
        phase = 0
        p\leq2c\operatorname{sin}\frac{\phi}{2}
        c\sqrt{}{3}\leq\mp@subsup{\rho}{i}{}
    then
        phase := 1
        r:=c
    end
```


Choosing the radius r of the circle

start
when
phase $=1$
then
phase $:=2$
$\rho:=r \sqrt{3}$
end

ρ goes from ρ_{i} to $r \sqrt{3}$


```
enter
when
    phase = 2
then
    phase:= 3
\rho
end
```


$$
\begin{aligned}
& \text { cycle } \\
& \text { when } \\
& \text { phase }=3 \\
& \text { then } \\
& \text { phase }:=4 \\
& \rho:=r \\
& \text { end }
\end{aligned}
$$


```
leave
when
    phase = 4
then
    phase:=5
\rho}:=r\sqrt{}{3
end
```


- We introduce the intermediate continuous parts
- We replace ρ by $\rho_{-} c$ (that is ρ continuous)
- We introduce now, the present time

$$
\begin{array}{ll}
\text { inv1_1: } & \rho_{-c} \in \mathbb{R}^{+} \rightarrow \mathbb{R} \\
\text { inv1_2: } & \text { now } \operatorname{dom}\left(\rho_{c} c\right) \\
\text { inv1_3: } & \rho=\rho c(\text { now }) \\
\text { inv1_4: } & \forall t \cdot t \in \operatorname{dom}\left(\rho_{-} c\right) \Rightarrow 2 \rho_{-} c(t) \sin \frac{\phi}{2} \geq p
\end{array}
$$

- inv1 3 is the gluing invariant
- inv1_4 generalises the previous invariant: $2 \rho \sin \frac{\phi}{2} \geq p$
(abstract-)INIT begin

$$
\begin{aligned}
& \quad \begin{array}{l}
\rho:=\rho_{i} \\
\text { phase } \\
r
\end{array}:=0 \\
& \text { end }: \in \mathbb{R}^{+}
\end{aligned}
$$

(concrete-)INIT begin

$$
\rho_{-} c:=\left\{0 \mapsto \rho_{i}\right\}
$$

$$
\text { phase }:=0
$$

$$
\boldsymbol{r}: \in \mathbb{R}^{+}
$$

$$
\text { now }:=0
$$

end
agree
any c where
phase $=0$ $p \leq 2 c \sin \frac{\phi}{2}$
$c \sqrt{3} \leq \rho_{i}$
then

$$
\text { phase }:=1
$$

$$
r:=c
$$

end
(abstract-)start when
phase $=1$ then
phase $:=2$
$\rho:=r \sqrt{3}$ end
(concrete-)start when
phase $=1$ then
phase $:=2$
$\rho_{-} c:=\lambda t \cdot t \in$ now $\left.. . n o w+\frac{\left(\rho_{i}-r \sqrt{3}\right)}{v} \right\rvert\, \rho_{i}-v(t-n o w)$
now $:=n o w+\frac{\left(\rho_{i}-r \sqrt{3}\right)}{v}$ end

start
when
phase $=1$
then

$$
\text { phase }:=2
$$

$$
\rho_{c} c: \left.=\lambda t \cdot t \in n o w . . n o w+\frac{\left(\rho_{i}-r \sqrt{3}\right)}{v} \right\rvert\, \rho_{i}-v(t-n o w)
$$

$$
n o w:=n o w+\frac{\left(\rho_{i}-r \sqrt{3}\right)}{v}
$$

end

- $\rho c($ now $)=\rho_{i}$
$-\rho_{c} c\left(n o w+\frac{\left(\rho_{i}-r \sqrt{3}\right)}{v}\right)=r \sqrt{3}$
- $\boldsymbol{\rho}_{\boldsymbol{c}} \boldsymbol{c}$ decreases linearly from ρ_{i} to $r \sqrt{3}$
$-\frac{\left(\rho_{i}-r \sqrt{3}\right)}{v}$ is the time it takes to fly from ρ_{i} to $r \sqrt{3}$

Computing ρ During First Part of Maneuver

$$
\begin{aligned}
\rho^{2} & =a^{2}+b^{2} \\
& =r^{2}(1-\cos \alpha)^{2}+r^{2}(\sqrt{3}-\sin \alpha)^{2} \\
& =r^{2}\left(5-4 \cos \left(\frac{\pi}{3}-\alpha\right)\right) \\
\rho & =r \sqrt{5-4 \cos \left(\frac{\pi}{3}-\alpha\right)}
\end{aligned}
$$

- ρ decreases from $r \sqrt{3}$ to r when α goes from 0 to $\frac{\pi}{3}$.

Computing ρ During First Part of Maneuver

- The angle α increases from 0 to $\frac{\pi}{3}$ during this phase
- The distance is $\frac{\pi r}{3}$
- The time to cover this distance is thus $\frac{\pi r}{3 v}$
- We have: $\alpha=\frac{v(t-\text { now })}{r}$

```
(abstract-)enter
    when
        phase = 2
```

(concrete-)enter
when
phase $=2$
then
phase $:=3$
$\rho_{-} c:=\lambda t \cdot t \in$ now..now $+\frac{\pi r}{3 v} \left\lvert\, r \sqrt{5-4 \cos \left(\frac{\pi}{3}-\frac{v(t-n o w)}{r}\right)}\right.$
now $:=n o w+\frac{\pi r}{3 v}$
end

enter

when

$$
\text { phase }=2
$$

then
phase := 3
$\rho_{-c}:=\lambda t \cdot t \in$ now $. . n o w+\frac{\pi r}{3 v} \left\lvert\, r \sqrt{5-4 \cos \left(\frac{\pi}{3}-\frac{v(t-n o w)}{r}\right)}\right.$
$n o w:=n o w+\frac{\pi r}{3 v}$
end

- $\rho c($ now $)=r \sqrt{5-4 \cos \frac{\pi}{3}}=r \sqrt{5-\frac{4}{2}}=r \sqrt{3}$
$-\rho_{-} c\left(n o w+\frac{\pi r}{3 v}\right)=r \sqrt{5-4 \cos \left(\frac{\pi}{3}-\frac{v \pi r}{r 3 v}\right)}=r \sqrt{5-4 \cos 0}=r$
- $\rho_{c} \boldsymbol{c}$ decreases non-linearly from $r \sqrt{3}$ to r

$$
\rho_{c} c(t)=r \sqrt{5-4 \cos \left(\frac{\pi}{3}-\frac{v(t-n o w)}{r}\right)}
$$

Thus

$$
\frac{d \rho_{-} c(t)}{d t}=\frac{4 r \sin \left(\frac{\pi}{3}-\frac{v(t-n o w)}{r}\right)}{2 \sqrt{5-4 \cos \left(\frac{\pi}{3}-\frac{v(t-n o w)}{r}\right)}} \frac{-v}{r}
$$

When t increases from now to now $+\frac{\pi r}{3 v}$, then the derivative $\frac{d \rho c(t)}{d t}$ increases monotonically from $-v$ to 0 :

$$
\begin{aligned}
& \frac{d \rho}{d t}(t)_{t=n o w}=\quad-v \\
& {\frac{d \rho_{-} c(t)}{d t}}_{t=n o w+\frac{\pi r}{3 v}}=0
\end{aligned}
$$

(abstract-)cycle
(concrete-)cycle
when
phase $=3$
then
phase $:=4$
$\rho_{-} c:=\lambda t \cdot t \in$ now ..now $\left.+\frac{2 \pi r}{3 v} \right\rvert\, r$ now $:=n o w+\frac{2 \pi r}{3 v}$ end

cycle

when

$$
\text { phase }=3
$$

then

$$
\text { phase }:=4
$$

$$
\rho c:=\lambda t \cdot t \in \text { now } \ldots \text { now } \left.+\frac{2 \pi r}{3 v} \right\rvert\, r
$$

$$
\text { now }:=n o w+\frac{2 \pi r}{3 v}
$$

end

- $\rho_{-c} \boldsymbol{c}($ now $)=r$
- $\rho_{-} c\left(n o w+\frac{2 \pi r}{3 v}\right)=r$
- $\boldsymbol{\rho} \boldsymbol{c} \boldsymbol{c}$ remains constant to r
(abstract-)leave when phase $=4$ then
phase $:=5$ $\rho:=r \sqrt{3}$ end

```
(concrete-)leave
    when
        phase \(=4\)
    then
        phase \(:=5\)
        \(\rho_{-} c:=\lambda t \cdot t \in\) now \(. . n o w+\frac{\pi r}{3 v} \left\lvert\, r \sqrt{5-4 \cos \left(\frac{v(t-n o w)}{r}\right)}\right.\)
        now \(:=n o w+\frac{\pi r}{3 v}\)
    end
```


leave

when

phase $=4$
then
phase $:=5$
$\rho_{\mathrm{C}} c:=\lambda t \cdot t \in$ now.. now $+\frac{\pi r}{3 v} \left\lvert\, r \sqrt{5-4 \cos \left(\frac{v(t-n o w)}{r}\right)}\right.$
now $:=$ now $+\frac{\pi r}{3 v}$
end
$-\rho c(n o w)=r \sqrt{5-4 \cos 0}=r$

- $\rho_{-} c\left(n o w+\frac{\pi r}{3 v}\right)=r \sqrt{5-4 \cos \frac{\pi}{3}}=r \sqrt{5-\frac{4}{2}}=r \sqrt{3}$
- $\rho \boldsymbol{c}$ increases non-linearly from r to $r \sqrt{3}$

$$
\rho_{c} c(t)=r \sqrt{5-4 \cos \left(\frac{v(t-n o w)}{r}\right)}
$$

Thus

$$
\frac{d \rho_{-} c(t)}{d t}=\frac{4 r \sin \left(\frac{v(t-n o w)}{r}\right)}{2 \sqrt{5-4 \cos \left(\frac{v(t-n o w)}{r}\right)}} \frac{v}{r}
$$

When t increases from now to now $+\frac{\pi r}{3 v}$, then the derivative $\frac{d \rho c(t)}{d t}$ increases monotonically from 0 to v :

$$
\begin{aligned}
& \frac{d \rho_{-c}(t)}{d t} t=n o w=0 \\
& {\frac{d \rho_{-} c(t)}{d t}}_{t=n o w+\frac{\pi r}{3 v}=v}=0
\end{aligned}
$$

$a=\frac{\rho_{i}-r \sqrt{3}}{v}, \quad b=a+\frac{\pi r}{3 v}, \quad c=b+\frac{2 \pi r}{3 v}, \quad d=c+\frac{\pi r}{3 v}$

Mathlab/Simulink Output 2: Aircraft Trajectories

Example 2

Train Control (adapted from A. Platzer's book)

Train Control (adapted from A. Platzer's book)

- Two trains are sent some information by Radio BroadCasting
- Two trains are sent some information by Radio BroadCasting

- Two trains are sent some information by Radio BroadCasting

- The second train is in position z
- Two trains are sent some information by Radio BroadCasting

- The second train is in position z
- It is made aware of a position m where it should at the latest stop

Train Control: Constraints and Goal

- The controller in the second train reacts every other ϵ seconds
- The controller in the second train reacts every other ϵ seconds
- It can change the acceleration of the train according to 3 values:

Accelerations are: $\boldsymbol{A},-\boldsymbol{b}$, or 0 , where \boldsymbol{A} and \boldsymbol{b} are positive

- The controller in the second train reacts every other ϵ seconds
- It can change the acceleration of the train according to 3 values:

Accelerations are: $\boldsymbol{A},-\boldsymbol{b}$, or 0 , where \boldsymbol{A} and \boldsymbol{b} are positive

- The speed should never be greater than $s l$ (speed limit)
- The controller in the second train reacts every other ϵ seconds
- It can change the acceleration of the train according to 3 values:

Accelerations are: $\boldsymbol{A},-\boldsymbol{b}$, or 0 , where \boldsymbol{A} and \boldsymbol{b} are positive

- The speed should never be greater than $s l$ (speed limit)
- The train should never go backwards
- The controller in the second train reacts every other ϵ seconds
- It can change the acceleration of the train according to 3 values:

Accelerations are: $\boldsymbol{A},-\boldsymbol{b}$, or 0 , where \boldsymbol{A} and \boldsymbol{b} are positive

- The speed should never be greater than sl (speed limit)
- The train should never go backwards
- Goal: Calculate the best acceleration at each controller's reaction.

Train Control: Formal Reasoning

Train Control: Formal Reasoning

- The second train is at position z and the "goal" is at position m

Train Control: Formal Reasoning

- The second train is at position z and the "goal" is at position m
- The train has a mass M and a speed v
- The second train is at position z and the "goal" is at position m
- The train has a mass M and a speed v
- In order to stop before m, the brake (deceleration b) should "absorb" the kinetic energy of the train $\left(\frac{M v^{2}}{2}\right)$:
- The second train is at position z and the "goal" is at position m
- The train has a mass M and a speed v
- In order to stop before m, the brake (deceleration b) should "absorb" the kinetic energy of the train $\left(\frac{M v^{2}}{2}\right)$:

$$
M b(m-z) \geq \frac{M v^{2}}{2}
$$

- The second train is at position z and the "goal" is at position m
- The train has a mass M and a speed v
- In order to stop before m, the brake (deceleration b) should "absorb" the kinetic energy of the train $\left(\frac{M v^{2}}{2}\right)$:

$$
M b(m-z) \geq \frac{M v^{2}}{2}
$$

that is

$$
2 b(m-z) \geq v^{2}
$$

- The second train is at position z and the "goal" is at position m
- The train has a mass M and a speed v
- In order to stop before m, the brake (deceleration b) should "absorb" the kinetic energy of the train $\left(\frac{M v^{2}}{2}\right)$:

$$
M b(m-z) \geq \frac{M v^{2}}{2}
$$

that is

$$
2 b(m-z) \geq v^{2}
$$

- This is the main invariant to be maintained

Train Control: Formal Reasoning (cont’d)

Train Control: Formal Reasoning (cont’d)

- At each control time (every other ϵ seconds), the invariant to be maintained is:

$$
2 b(m-z) \geq v^{2}
$$

Train Control: Formal Reasoning (cont’d)

- At each control time (every other ϵ seconds), the invariant to be maintained is:

$$
2 b(m-z) \geq v^{2}
$$

- If the speed is v and acceleration is a at position z,
- At each control time (every other ϵ seconds), the invariant to be maintained is:

$$
2 b(m-z) \geq v^{2}
$$

- If the speed is v and acceleration is a at position z,
- after ϵ seconds, the speed will be $v+a \epsilon$
- At each control time (every other ϵ seconds), the invariant to be maintained is:

$$
2 b(m-z) \geq v^{2}
$$

- If the speed is v and acceleration is a at position z,
- after ϵ seconds, the speed will be $v+a \epsilon$
- and the position will be $z+v \epsilon+a \frac{\epsilon^{2}}{2}$.
- At each control time (every other ϵ seconds), the invariant to be maintained is:

$$
2 b(m-z) \geq v^{2}
$$

- If the speed is v and acceleration is a at position z,
- after ϵ seconds, the speed will be $v+a \epsilon$
- and the position will be $z+v \epsilon+a \frac{\epsilon^{2}}{2}$. We must then have:

$$
2 b\left(m-z-v \epsilon-a \frac{\epsilon^{2}}{2}\right) \geq(v+a \epsilon)^{2}
$$

- At each control time (every other ϵ seconds), the invariant to be maintained is:

$$
2 b(m-z) \geq v^{2}
$$

- If the speed is v and acceleration is a at position z,
- after ϵ seconds, the speed will be $v+a \epsilon$
- and the position will be $z+v \epsilon+a \frac{\epsilon^{2}}{2}$. We must then have:

$$
2 b\left(m-z-v \epsilon-a \frac{\epsilon^{2}}{2}\right) \geq(v+a \epsilon)^{2}
$$

that is

$$
2 b(m-z) \geq v^{2}+\left(a \epsilon^{2}+2 v \epsilon\right)(a+b)
$$

Train Control: Formal Reasoning (cont’d)

- We must have the following after ϵ seconds:

$$
2 b(m-z) \geq v^{2}+\left(a \epsilon^{2}+2 v \epsilon\right)(a+b)
$$

- We must have the following after ϵ seconds:

$$
2 b(m-z) \geq v^{2}+\left(a \epsilon^{2}+2 v \epsilon\right)(a+b)
$$

- The choice of the new acceleration can be A if

$$
2 b(m-z) \geq v^{2}+\left(a \epsilon^{2}+2 v \epsilon\right)(A+b)
$$

- We must have the following after ϵ seconds:

$$
2 b(m-z) \geq v^{2}+\left(a \epsilon^{2}+2 v \epsilon\right)(a+b)
$$

- The choice of the new acceleration can be A if

$$
2 b(m-z) \geq v^{2}+\left(a \epsilon^{2}+2 v \epsilon\right)(A+b)
$$

- Otherwise, the acceleration should be -b (braking), resulting in:

$$
2 b(m-z) \geq v^{2}
$$

Train Control: Formal Reasoning (cont’d)

Train Control: Formal Reasoning (cont’d)

- After the choice of acceleration, A or -b, the speed of the train is:

$$
v+a \epsilon
$$

- After the choice of acceleration, A or -b, the speed of the train is:

$$
v+a \epsilon
$$

- If $v+a \epsilon>s l$, we must choose a 0 acceleration (instead of A)
- After the choice of acceleration, A or -b, the speed of the train is:

$$
v+a \epsilon
$$

- If $v+a \epsilon>s l$, we must choose a 0 acceleration (instead of A)
- We have the additional invariant: $v \in 0$.. sl
- After the choice of acceleration, A or -b, the speed of the train is:

$$
v+a \epsilon
$$

- If $v+a \epsilon>s l$, we must choose a 0 acceleration (instead of A)
- We have the additional invariant: $v \in 0$.. sl
- We have thus three different controller decisions:
- decision 1: acceleration -b
- decision 2: acceleration A
- decision 3: acceleration 0

Train Control: Driving the Train

- If the speed and position are v and z, then after ϵ seconds:

Train Control: Driving the Train

- If the speed and position are v and z, then after ϵ seconds:
- the new speed of the train will be:
- drive 1: if $\boldsymbol{v}+\boldsymbol{a \epsilon} \geq 0$ then $v+a \epsilon$
- drive 2: if $\boldsymbol{v}+\boldsymbol{a} \boldsymbol{\epsilon}<\mathbf{0}$ then 0

Train Control: Driving the Train

- If the speed and position are v and z, then after ϵ seconds:
- the new speed of the train will be:
- drive 1: if $\boldsymbol{v}+\boldsymbol{a \epsilon} \geq 0$ then $v+a \epsilon$
- drive 2: if $\boldsymbol{v}+\boldsymbol{a} \boldsymbol{\epsilon}<\mathbf{0}$ then 0
- the new position of the train will be:
- drive 1: if $v+a \epsilon \geq 0$ then $z+v \epsilon+a \frac{\epsilon^{2}}{2}$
- drive 2: if $\boldsymbol{v}+\boldsymbol{a} \boldsymbol{\epsilon}<0$ then $z+\frac{v^{2}}{2 b}$ (the train stops after time $\frac{\boldsymbol{v}}{\boldsymbol{b}}$)

Conclusion and Future Work

Conclusion and Future Work

- We presented an approach to develop hybrid systems in Event-B

Conclusion and Future Work

- We presented an approach to develop hybrid systems in Event-B
- This approach did not require adding new features to Event-B

Conclusion and Future Work

- We presented an approach to develop hybrid systems in Event-B
- This approach did not require adding new features to Event-B
- The only thing that will be necessary in Event-B are Real Numbers

Conclusion and Future Work

- We presented an approach to develop hybrid systems in Event-B
- This approach did not require adding new features to Event-B
- The only thing that will be necessary in Event-B are Real Numbers
- This will be done through the very important Theory plug-in (Issam Maamria, Michael Butler)

Conclusion and Future Work

- We presented an approach to develop hybrid systems in Event-B
- This approach did not require adding new features to Event-B
- The only thing that will be necessary in Event-B are Real Numbers
- This will be done through the very important Theory plug-in (Issam Maamria, Michael Butler)
- Continuous variables are not defined by differential equations

Thank you for listening

