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The railway system uses more and more data processing or 
computerized systems:

The classical IT-Systems have some advantages:

� News functions, increasingly complex

� Orders at distances

� Exploitation staff reduction…

They have also disadvantages – They are:

� are longer to develop and to modify

� are less available and have à shorter life time

� require a qualified maintenance staff

� are more difficult to validate and to integrate in a global system

Problematic of IT-Systems systems
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The recent experience show us unfortunately that the current development 

methods don’t give a “real guarantee” that the products will be absolutely safe 

(SIL4 or not), that they can be integrated safely in a global railway system.

� A recent study showed that more then ¾ accidents in relation with

computerized systems are due to specifications errors

� The accidents are due to incorrect functional descriptions, to 

modification or maintenance operation

� The examples are numerous, also in the railway applications 

(cf. ETCS and ERTMS applications…)

� A fact is sure, the current standards are not sufficient…

There are SIL4 and SIL4 systems…

Problematic of IT-Systems systems
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We need a new way to guarantee the safety of critical  
computerized systems:

� With the traditional systems:
- it was necessary to identify the dreaded events and to reduce
their probability 

� With computerized systems:
- the list of the dreaded events is not countable
- it is necessary to define the framework of the authorized system
states and to be able to check the framework is never left

- an formal proof is only possible if the domain of the reachable
system states is finished and countable.

- the formal proof of an application designed with an algorithmic
software is „difficult “, or generally impossible to realise

Problematic of IT-Systems systems
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An N by P architecture does not reduce this kind of risk (failure)
If there exists a combination of entries which can lead the system to 
a unsure state, this one will exist on all the computerized units at 
the same time

Inputs combination 

leading to a unsure 

system state

Specification error (in 

the system context)

N output in the 

same unsure 

position at the 

same time

Problematic of IT-Systems systems
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A countable reachable system states is necessary to the realisation 
of a formal proof: If not, the system is in practice not testable…

Start
When a envisaged combination 

occurs, the system runs over the 

greens and oranges system states, 

usually well tested

When a non envisaged combination 

occurs, the system can reach the 

reds system states, not tested and 

potentially dangerous

A formal method has to prove that it doesn’t exist any not envisaged 
combination who can activate a unsure function

Problematic of IT-Systems systems
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� In general:
– The railway systems generally use Boolean values, use automatisms
– The safety is carried out with incompatibilities (exclusion in space and 

time of a common position of resources)

� Interlocking functions has to:
– Take into account all the national laws, exploitation rules…
– Take into account the environment of the system (without exportation of 

safety constraint…)
– Be in service 24:00 over  24:00, 365 days par year, many years long…
– Are numerous on the network 
– Be checked at 100% after each functional modification or maintenance 

intervention   

Railway characteristics
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� The SNCF designed PIPC interlocking system were designed:
– To carry out a clear separation between « hardware & basic software »

(suppliers view) and « functional software » (infrastructure manager view)

– To carry out clear interfaces between the computerized module and rest 
of the railway system

– To carry out the specification and the functional software with 
interpretable deterministic Petri nets (interpreted in the target machine) 

– To reduce the safety demonstration costs and to allow a formal validation 
of the functional software in the real environment conditions of the 
interlocking system 
⇒ the method have to be applicable by signalling engineers

Railway characteristics



Paramétrage de configuration Logiciel applicatif

Logiciel de base

P aramètres  

applicatifs

P aramètres  

s ys tème

D escription des  

graphes

S équenceur

G es tion des  

res s ources

Moteur de 

rés olution 

des  graphes

G es tion des  

entrées  

terrain

G es tion des  

s orties  

terrain

T emporis ations

G es tion des  

communications

(AEFD)
Interface I2

Interface I1

� The architecture use common functional interfaces for all the  interlocking 

systems (for all the suppliers)

Interface I0 : SAAT 
procedure

AEFD 
language

NS1 relays

Infrastructure 
manager 
responsibility

Suppliers 
responsibility

N1
SIL4

Interpretable 
deterministic 

Petri nets

Railway characteristics
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� The classical Petri nets aren’t generally not interpretable in a 
deterministic way:
– It doesn’t exist a distinction between „intern“ and „extern“ events
– It exist possible indecisions in the real time Petri nets interpretation 

(priorities…)

Graph 1
Graph 2

Graph …
Graph N

Graph N
Graph …

Graph 2
Graph 1

„Intern“
„Intern“

„Extern“ „Extern“

Two different interpretations 
Two reachable system states trees

Interpretable deterministic Petri Nets
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� With classical Petri nets:
– The interpretation depends of the graph interpretation order
– The nets are generally not interpretable in real time

2 

1

Event which starts transition: 

TC_2005_free

Action realised then the 

transition is drawn: 

Signal_Open

TC_2002_free

TC_2003_free

Classical PN

Interpretable deterministic Petri Nets



16

2 

1

Event which starts transition : 

TC_2005_free

Condition : TC_2002_free AND TC_2003_free

AEFD 

Language

� AEFD language allows a deterministic functional specification and a deterministic 
interpretation of signalling functions (competing automats with constraints):

– The interpretation is realisable without indecision

– The interpretation is not dependant of the graphs reading order

– The interpretation is realizable in real time 

Action realised then the 

transition is drawn: 

Signal Open

Interpretable deterministic Petri Nets
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…
Graph name
1
2
TC_2005_Libre Event
TC_2002_Libre AND TC_2003_Libre AND 
TC 2005_Libre Condition
Signal_Open; Action
…

Selected 

notation in the 

textual 

interpretable 

file form

� AEFD definite language allows a deterministic functional specification and a 
deterministic interpretation of signalling functions:

– The interpretation is realisable without indecision

– The interpretation is not dependant of the graphs reading order

– The interpretation is realizable in real time 

Interpretable deterministic Petri Nets



Graph A Test place 
K

Graph B

a b

� Communication between graphs with classical Petri nets:

1 1

2 4

3

2

[A1, A2, A3, A4, B1, B2, K]

[1, 0, 0, 0, 1, 0, 0]

[A1, A2, A3, A4, B1, B2, K]

[0, 1, 0, 0, 1, 0, 0]
[A1, A2, A3, A4, B1, B2, K]

[1, 0, 0, 0, 0, 1, 1]

Event a Event b

[i, j, IND(K)]

[1, 1, 0]

[i, j, IND(K)]

[1, 2, 1]

Event a

[A(i), B(j), K]

[i, j, IND(K)]

[2, 1, 0]

Event b

Global state vector

Classical representation Simplified written mode
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Interpretable deterministic Petri Nets



Graph A

Indicateur
K

Graph B

� Communication between graphs with the selected notation:

1 1

2 4

3

2

a
[ 
K_non_Actif]
/

b
[ K_non_Actif ]
K_Actif/

[i, j, IND(K)]

[1, 1, 0]

[i, j, IND(K)]

[1, 2, 1]

Event a

[A(i), B(j), K]

[i, j, IND(K)]

[2, 1, 0]

Event b

Vecteur d‘état global

Ecriture simplifiée
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An indicator is 

ordered by only one 

graph, it can be read 

by all the graphs

Interpretable deterministic Petri Nets
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� With the selected written mode, the Petri nets are interpretable in 
a deterministic way, without ambiguity and in real time

Graphe 1
Graphe 2

Graphe …
Graphe N

Graphe N
Graphe …

Graphe 2
Graphe 1

„Interne“
„Interne“

„Externe“ „Externe“

An unique reachable, finished and countable system states

Fichier.txt Fichier.txt

Interpretable deterministic Petri Nets
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� It exists two families of formal methods:
�Formal design method: 

The proof is brought by code construction, the code is
transcribed and compiled to be installed in the target machine
(mainly a suppliers vision)

�Formal validation method: 
The proof is brought on the final interpreted final functional 
model (mainly an infrastructure manager vision)
The suggested method is a formal validation method
The method is applicable on the functionalities written with
deterministic and interpretable Petri nets

Formal validation method



23

� The functions written with deterministic and interpretable PN can 
be represented by an unique reachable system states:

Formal validation method

Initial sure 
state

Systematically system states research

Post* (Initial_state)



� Each state system can be associated with one with the 4 categories:
– System states sure and available
– System states sure but not available
– States system systematically reachable sure system 

states (not available)
– Unsure system states

The system doesn’t 

not do what is 

awaited

The system does 

what is awaited

Sure system states 

(system not
available)

Unsure 
system 
states

Breakdown

material

Systematic software 

error

System states 

systematically sure
and non available

Sure states

Formal validation method
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� The safety properties must be written in order to be able to 
prove that no “sure but not available system state”
(overabundant) or „unsure system state is reachable

System states 

accessible and

sure

Sure system states 

(system not
available)

Unsure 
system 
states

Breakdown

material

Systematic software 

error

System states 

systematically sure
and non available

Sure states

Formal validation method
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� The safety properties have to be written with « proof automats », 
by signalling engineers, in three stages:

Stage 1: description of the safety properties 
or incompatibilities they have to be ever 
respected by the railway system

Stage 2: description of the waited 
functionalities for the detection of 
« possible » overabundant conditions

Stage 3: functional postulates description 
(rules, environment…) limiting the validity 
field  of the proof 

Simple 

text file

Formal validation method
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� The proof can be accomplished in the following way with 
the use of the « functional graphs » and « proof graphs »:

�The proof principle is the following: 

«If a group of properties is true for a given system state, and that this group remains 

proved during a transition between system states, then the property is true in the new 

system state»

This proof can be reproduced for every level of system states to the point of being 

applied by recurrence to all reachable system states. The initial state have to be safe.

Post* ( Etat Initial) ∩∩∩∩ Unsafe States = φφφφ ?

Formal validation method



� The basic principle is:

28

Initial safe state All the possible 
transitions are 
known

All the reachable 
transitions are 
proved

All the reachable 
system states a 
safe

⇒⇒⇒⇒AND AND

Reached state

Proved 
Transitions

State which doesn’t 
respect a postulate

Formal validation method
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• Use of the AEFD language as a unit specification language : 
1st use : proved specifications + exhaustive check plan generation

Functionalities 
(signalling language)

Safety Properties
& Postulates (AEFD)

Formal validation of the 
specification written 
with the AEFD language

Transcription of the 
functionalities

Design of the software 
(functions & system)

Verification of the 
system by the supplier

Exhaustive check plan 

Infrastructure 
manager

Suppliers in 
charge of the 
development

Formal validation method
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• Use of the AEFD language as a unit specification language : 
2nd use : proved specifications + interpretation by a safe target unit

Functionalities 
(AEFD)

Safety Properties
& Postulates (AEFD)

Formal validation of the 
specification written 
with the AEFD language

Infrastructure 
manager

Suppliers in 
charge of the 
development

Specification de 
l’interpréteur et de la 
structure d’accueil

Code exécutable 
(fonctions système)

Validation de 
l’interpréteur et de la 
structure d’accueil

.exe

Exhaustive check of 
the functionalities of 
the automatism / Go for 
putting into service

Formal validation method
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Appropriated tools were developed by SNCF Infra to accomplish:

─ Automatic definition of the safety properties and the postulates describing the 

conditions of use,

─ Formal writing of these properties in order make the proof,

─ Definition of the initial system state in which all the safety property are true,

─ Evaluation of the safety properties by recurrence for each transition between 

system states. The safety properties are evaluated until all safety properties are 

true, otherwise the proof is stopped.

⇒Their application is possible by persons without special mathematical 

education but only a good signalling knowledge

⇒Their application leads to a significant reduction of the validation costs 

and delays .32

Application - Formal validation tools chain 
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� Formal validation process - Step 1

Data base of 

graphical object (all 

possible on in France)

Capture of the track plan 

Data base of generic 

proof graphsInstantiation

Description of the track 
plan data file

Interlocking 
simulator

Data file of description 
of all the proof graphs 
for this track plan Listing of all the 

variable -
Comparison

Signalling Study process

Proofer (horizontal and vertical explorations)

Data file of description 
of all the functional 
graphs for track plan

Application - Formal validation tools chain 
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� Formal validation process - Step 2

Generation of the tree of 

reachable system states

Event tree of reachable

system states

Analyse of the tree of 

reachable proven system 

states

Execution reporti–

OK if all the properties 

haven been proved

Contre examples list if 

the proof isn’t OK

Automatic check of the 
conditions of the initial 
check plan

Proofer (horizontal and vertical)

Trace of all the details for 

an forward analyse

Trace (.txt)

Application - Formal validation tools chain 
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26

Association d’objets de 
signalisation avec 

paramétrage minimal
a

Saisie des paramètres : instanciation des objets

Nombre de réponses 

demandent une 

réflexion préalable de 

l’essayeur (élaboration 
du cahier d’essais)

Elément ou listes 

d’éléments permettant 

d’instancier les 

Automates de preuve

Capture of the track plan by topological 

association of graphical object

Graphical Objects topological laid out  and 

instantiate: automatically or manually by the 

signalling engineer in charge of the proof: 

- Signal object,

- Switch object…

26

Association d’objets de 
signalisation avec 

paramétrage minimal
a

Saisie des paramètres : instanciation des objets

Nombre de réponses 

demandent une 

réflexion préalable de 

l’essayeur (élaboration 

du cahier d’essais)

Elément ou listes 

d’éléments permettant 

d’instancier les 

Automates de preuve

� Track plan example and safety properties instantiation

Application - Formal validation tools chain 
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� Proof tool view

Control screen 
of the Proof 
tool

System state change selected  
(blue)

System State Vector before 
the selected transition

System state Vector after the 
selected transition

Details of the transition

Screen button

-Curent Graph State

- Logical state of 
signalling variable 
(inputs, indicators, 
output, events of 
graphs activation…)

Application - Formal validation tools chain 
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(1) To carry out the vivacity 

check

(2) To carry out the 

execution report

(3) To presenter the results 

with ergonomic manner

(4) To carry out the tree of 

the transitions tree

Proved transitions tree and reachable states:
- Yellow: un respected Postulate

- White: Transition true and proved

- Grey: Transition un authorized 

- Red: Transition leading to the un respect of one or 

more safety property

-Green: Transition leading to an overabundant

� Reachable states tree tool view

Application - Formal validation tools chain 
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� The development of critical computerized systems should not 
take place any more without application of a formal method 
allowing to guarantee the functional software: 

– In particular for the system “to complicated to be tested”…

�The practical application of formal methods requires to create from 

the design the necessary conditions for its realization:

– The safety properties can't be written by suppliers or mathematicians, 

but only by Signalling men : the only persons who know the postulates of the 

system, the environment conditions…

– It is necessary to differentiate clearly the functional software (signalling)

and the basic software (computer science)

Conclusion
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� The method is applied with functional software defined with 
deterministic and interpretable Petri nets. It key points are:
– Model based specifications, provable and interpretable in real time, can be 

used for critical IT-Systems (300 in use today)
– No risk of error introduction during the code generation and compilation

– Less expensive than tests accomplished traditionally

– The infrastructure manager controls the functionalities… with his own 
people

– Can be used in an industrial way, without people educated in mathematics,
– Automatic and exhaustive check of the interlocking system 
– Is now applied on a real interlocking systems

�The real difficulty is the generic identification and the 
formalization of safety properties and postulates

Conclusion
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The method allows to realize 
industrially a formal validation
of the IT system functionalities 
in its context of use:

�allows an automatic and exhaustive
check-up of an interlocking system,

�gives as result an achieved guaranty. 

The mathematic properties of a “state machine” can be used when 
the interlocking system design with the necessary constraints.

Critical computerized system Over système

Exploitation 

rules

sensors

Actionneurs

IT system

Opérator Maintenance

Conclusion
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The approach can be a bridge between two worlds : railway vs. 
university

- to conceal the mathematical aspects,
- to have a interface specific to the domain.

The method allows to reduce the costs and increases t he safety of 
critical IT system. It will be used by the SNCF Infra and the UIC

The application of formal methods is now an obligati on for the 
development of new critical IT system if we want really:

- a safe railway world for tomorrow,
- to save people and money,
- to react before a next railway informatics Titanic,
- to maintain the safety level has an important advantage

of the railway system in a competitive market.

Conclusion



Thank you for your attention
Any question?

Dr Marc ANTONI
SNCF – Infrastructure Direction 
marc.antoni@sncf.fr

� Formal proven since 1896



Because you will never have the 
possibility to come back and try 

again…

Dr Marc ANTONI
SNCF – Infrastructure Direction 
marc.antoni@sncf.fr


